Simplicial localization of monoidal structures, and a non-linear version of Deligne's conjecture

نویسنده

  • JOACHIM KOCK
چکیده

We show that if (M,⊗, I) is a monoidal model category then REnd M (I) is a (weak) 2-monoid in sSet. This applies in particular when M is the category of A-bimodules over a simplicial monoid A: the derived endomorphisms of A then form its Hochschild cohomology, which therefore becomes a simplicial 2-monoid.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

[hal-00773001, v1] Simplicial localization of monoidal structures, and a non-linear version of Deligne's conjecture

We show that if (M,⊗, I) is a monoidal model category then REnd M (I) is a (weak) 2-monoid in sSet. This applies in particular when M is the category of A-bimodules over a simplicial monoid A: the derived endomorphisms of A then form its Hochschild cohomology, which therefore becomes a simplicial 2-monoid.

متن کامل

The symmetric monoidal closed category of cpo $M$-sets

In this paper, we show that the category of directed complete posets with bottom elements (cpos) endowed with an action of a monoid $M$ on them forms a monoidal category. It is also proved that this category is symmetric closed.

متن کامل

Divided Power Structures and Chain Complexes

We interpret divided power structures on the homotopy groups of simplicial commutative rings as having a counterpart in divided power structures on chain complexes coming from a non-standard symmetric monoidal structure.

متن کامل

5 M ar 2 00 8 Algebras of higher operads as enriched categories

We decribe the correspondence between normalised ω-operads in the sense of [1] and certain lax monoidal structures on the category of globular sets. As with ordinary monoidal categories, one has a notion of category enriched in a lax monoidal category. Within the aforementioned correspondence, we provide also an equivalence between the algebras of a given normalised ωoperad, and categories enri...

متن کامل

A Model Category Structure on the Category of Simplicial Multicategories

We establish a Quillen model structure on simplicial (symmetric) multicategories. It extends the model structure on simplicial categories due to J. Bergner [2]. We observe that our technique of proof enables us to prove a similar result for (symmetric) multicategories enriched over other monoidal model categories than simplicial sets. Examples include small categories, simplicial abelian groups...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003